摘要:針對地下污水處理廠的配電系統提出智能配電設計思路,在綜合分析了硬件選擇、軟件配置和使用效果的基礎上,進行了相應的經濟分析。結果表明,智能配電系統將成為未來發展趨勢,將在越來越多的同類建設工程中得到應用。
關鍵詞:智能配電;地下污水處理廠;配電系統;
1背景
隨著經濟的發展,城鎮化進程的加快,越來越多的污水處理廠建設突破傳統地上污水處理廠用地觀念,科學合理地利用地下空間,建設地下式污水處理廠。地下污水處理廠具有占用空間小、節省地上土地資源等優點,同時減少對周圍景觀的美觀性產生影響,不僅提高了周圍土地資源的價值,也解決了污水處理過程中產生的污濁氣、噪音等問題,對周圍居民和環境產生“零影響"。目前已建的地下污水處理廠多采用傳統配電設計方案,在提質增效方面基本無改進空間。通過地下污水處理廠智能配電系統的搭建,可以降低人工成本、優化運營環境、降低能耗。
2地下污水處理廠智能配電系統設計
早期污水處理廠往往按照傳統配電方案進行設計,隨著技術的進步,污水處理廠管理水平的提升,對電氣設計不再滿足于安全、可靠、經濟、便利、節能等常規要求;而是希望更加智能化,能夠通過技術手段優化生產方案,降低生產成本、便于后期維護;并且污水處理廠內變配電間相對其他區域更易發生火災,希望能夠有效預防電氣火災。污水處理是生化處理過程,一旦停電將造成供氧中斷,使微生物大量死亡,嚴重影響污水廠的處理效果和效率,要恢復正常運行,需要重新對活性污泥進行一定時間的培養和馴化,對供電要求較高;并且全地下式污水處理廠的通風、消防等負荷大,如果中斷供電,還可能造成污水浸泡整個箱體。
對傳統污水處理廠配電系統進行設計總結后,可以將傳統污水處理廠配電系統缺點歸納總結為3點:存有隱患、管理粗放、缺少分析。
2.2地下污水處理廠智能配電系統的解決方案
除常規自動火災報警系統設計外,還使用了以下智能設備,消除電氣火災隱患;
1)具有溫度檢測的高壓智能斷路器。
火災通常由設備故障引起一般因產品老化所致。傳統配電方案往往僅通過多功能表監測電壓、電流、頻率等參數,無法監測設備老化狀態。選用能監測設備老化的電氣產品可大大降低火災風險,設備自帶的內嵌式設計的溫度檢測,可以保證開關設備原有絕緣性,通過自供電測溫單元及磁飽和技術,實現免維護,確保安全、穩定地長期工作,依托NFC自動識別組網技術,實現APP與設備的快速對接,通過Zigbee非接觸式無線通訊技術,實現接收單元與高壓側電氣隔離。見圖1。
站控單元:
火災發生往往是因為設備老化發生故障所致。站控單元可以顯示產品老化程度,提醒運維人員在適當時機更換設備,降低發生火災的概率。此類產品能可視化呈現容量信息,讓風險提示更靠近設備端,輔助運維響應速度更快。預設界面模板基于配電柜體布局,可清晰對應設備層次關系,快速檢索故障根因。斷路器運行數據和老化分析等電氣資產關鍵運行信息能夠直觀呈現。設備內置軟件,擁有自動化工具,標準化模板,可縮短50%左右的調試時間。站控單元既可以在新建項目中布置在受總柜、電容柜等,也可以在改建項目布置在配電室墻面上。見圖2。
采用PME/PSO:
PME(電能管理系統)可以對全廠的設備運行進行監視。系統后臺時刻監測能源使用狀態、生成清晰的能耗視圖,助力建立能源使用的管理方針,優化能耗成本。PSO(電力監控系統)可以對全廠的設備進行控制。通過靈活的九余架構、開放的協議支持,實現高可靠性、高實時性的系統方案。同時,PSO具有模塊化特性,可在電力監控的基礎上實現能源管理、電力資產管理等靈活的功能組合,滿足用戶的多樣化需求。PME/PSO做為中低壓一體化電力監控平臺,提高了系統的集成度,方便客戶進行監控管理,實現了能耗分析等能源管理功能。見圖3和圖4。
精細化管理:
軟件的實施可以實現資產存檔、資產快查、規范工作流程、追蹤運維過程、體現能源使用狀態等功能
3)主動運維:
傳統的維護是被動調整,哪壞修哪,響應時間長;通過預測主動維護,設備老化到一定程度進行預警提示,來決定修或者換,帶來的運行損失更小。主動提示風險,輔助運維快速反應。
傳統污水處理廠缺少運行電氣系統數據分析,傳統的軟件更加關注工藝流程,電力數據利用率較低;分析基本依托運維人員個體的經驗,速度和能力遠不及專業的電腦及分析軟件。各種智能軟硬件的應用可以進行大數據收集,收集后采用智能分析評估、智能應用,結合資產評估,依托專家服務留存處理方案,提升運維體系的高效性。
3地下污水廠智能配電系統的效益
智能配電系統的應用雖然會帶來工程建設造價增加,但通過精細管理、專家服務可以主動運維帶來以下收益。
3.1降低人工成
現在專業電工普遍年齡偏大并且人員數量少以處理規模10x104m/d水廠為例,通常機械、電氣及儀表運維護人員為3班次,每5人一班,共計15人。主動運維可以更有計劃的進行電力維護,減少工作量上較明顯的波谷。運維人員可優化為3班次,每2人一班,共計6人,減少運維人員9人。
3.2優化運營環境
傳統污水處理廠的一些工藝步驟需要白天進行,因此需要有足夠人力物力給予保證;采用智能配電體系后,如污水處理廠內的污泥脫水等非連續運行設施,可以全部調整在電價波谷段運行。
3.3降低能耗
地下污水處理廠的非生產用電占比較傳統污水處理廠高,可挖掘的節能潛力較多,如果沒有PSE和PSO,節能方案將無所依據。通風、照明、綜合樓等非生產用電,鼓風曝氣、進水、出水等生產用電,可通過智能化分析,合理調整運行時間。設備組合實現能源利用的優化,例如:通風系統通過環境儀表檢測,采用局部區域運行,或不同區域輪流運行等措施,實現能耗的降低。見圖5。
4.1平臺概述
安科瑞電氣具備從終端感知、邊緣計算到能效管理平臺的產品生態體系,AcrelEMS-SW智慧水務能效管理平臺通過在污水廠源、網、荷、儲、充的各個關鍵節點安裝保護、監測、分析、治理裝置,用于監測污水廠能耗總量和能耗強度,重點監測主要用能設備能效,保護污水廠運行安全可靠,提高污水廠能效,為污水處理的能效管理提供科學、精細的解決方案。
4.2平臺組成
AcrelEMS智慧水務綜合能效管理系統由變電站綜合自動化系統、電力監控及能效管理系統組成,涵蓋了水務中壓變配電系統、電氣安全、應急電源、能源管理、照明控制、設備運維等,貫穿水務能源流的始終,幫助運維管理人員通過一套平臺、一個APP實時了解水務配電系統運行狀況,并且根據權限可以適用于水務后勤部門管理需要。
4.3平臺拓撲圖
4.4平臺子系統
4.4.1變電站綜合自動化系統及電力監控
對水務配電系統中34kV、10kV電壓等級配置繼電保護和弧光保護,實現遙測、遙信、遙控、遙調等功能,對異常情況及時預警。
監測變壓器、水泵、鼓風機的電流、電壓、有功/無功功率、功率因數、負荷率、溫度、三相平衡、異常報警等數據。
4.4.2電能質量監測與治理
水務中大量的大功率電機、水泵變頻啟動導致配電系統中存在大量諧波,通過監測其配電系統的諧波畸變、電壓波動、閃變和容忍度指標分析其電能質量,并配置對應的電能質量治理措施提高供電電能質量。
4.4.3電動機管理
馬達監控實現水務中電機的保護、遙測、遙信、遙控功能,電動機保護器能對過載、短路、缺相、漏電等異常情況進行保護、監測和報警。高效、準確地反映出故障狀態、故障時間、故障地點、及相關信息,對電機進行健康診斷和預防性維護。同時支持與PLC、軟啟、變頻器等配合,實現電動機自動或遠程控制,監視、控制各個工藝設備,保障正常生產。
4.4.4能耗管理
為水務搭建計量體系,顯示水務的能源流向和能源損耗,通過能源流向圖幫助水務分析能源消耗去向,找出能源消耗異常區域。
將所有有關能源的參數集中在一個看板中,從多個維度對比分析,實現各個工藝環節的能耗對比,幫助領導掌控整個工廠的能源消耗,能源成本,標煤排放等的情況。
能耗數據統計采集水務中污水廠、自來水廠、水泵站等的用電、用水、燃氣、冷熱量消耗量,同環比對比分析,能耗總量和能耗強度計算,標煤計算和CO2排放統計趨勢。
能效分析按三級計量架構,分別進行能效分析,契合能源管理體系要求,可對各車間/職能部門的能效水平進行分析,同比、環比、對標等。通過污水處理產量以及系統采集的能耗數據,在污水單耗中生成污水單耗趨勢圖,并進行同比和環比分析,同時將污水的單耗與行業/先進指標對標,以便企業能夠根據產品單耗情況來調整生產工藝,從而降低能耗。
系統為污水廠、自來水廠、水泵站等提供了照明控制管理方案,支持單控、區域控制、自動控制、感應控制、定時控制、場景控制、調光控制等多種控制方式,模塊可根據經緯度自動識別日出日落時間實現自動控制功能,盡量利用自然光照,實現室內、廠區照明的智能控制達到安全、節能、舒適、高效的目的。
監測配電系統回路的漏電電流和線纜溫度,實現對污水廠、自來水廠、水泵站的電氣安全預警。
根據預先設置的應急預案快速啟動疏散方案引導人員疏散。系統接入消防應急照明指示系統數據,通過平面圖顯示疏散指示燈具工作狀態和異常情況。
監測消防設備的工作電源是否正常,保障在發生火災時消防設備可以正常投入使用。
(4)防火門監控系統
防火門監控系統集中控制其各終端設備即防火門監控模塊、電動閉門器、電磁釋放器的工作狀態,實時監測疏散通道防火門的開啟、關閉及故障狀態,顯示終端設備開路、短路等故障信號。系統采用消防二總線將具有通信功能的監控模塊相互連接起來,當終端設備發生短路、斷路等故障時,防火門監控器能發出報警信號,能指示報警部位并保存報警信息,保障了電氣安全的可靠性。
4.4.7環境監測
污水廠、自來水廠、水泵站等場所溫濕度、煙霧、積水浸水、視頻、UPS電池間可燃氣體濃度展示和預警,保障污水廠、自來水廠、水泵站等安全運行。當可燃氣體或有害氣體濃度超標可自動啟動排風風機或新風系統,排除隱患,保持良好的水處理環境。
4.4.8分布式光伏監測
實時監測低壓并網柜每路的電流、電壓、功率等電氣參數及斷路器開關狀態,逆變器運行監視,對逆變器直流側每一光伏組串的輸入直流電壓、直流電流、直流功率,逆變器交流電壓、交流電流、頻率、功率因數、當前發電功率、累計發電量進行監測,以曲線方式繪制上述監測的各個參量的歷史數據。
平臺結合廠區實際分布情況,通過3D或2.4D平面圖顯示分布式光伏組件在屋頂、車棚的分布情況,顯示匯流箱、并網點位置,各個屋頂的裝機容量。
平臺通過2D、3D方式實時監視粗格柵、污水提升、細格柵、曝氣沉砂、改良生化處理、二沉、加氯接觸消毒、污泥濃縮壓濾、生物除臭等工藝設備運行狀態。在格柵清渣機、污水提升泵、回流泵、曝氣風機、加藥泵、濃縮壓濾機、吸沙泵、吸泥泵等低壓電動機控制柜或低壓饋電柜安裝電動機保護,進行短路、過流、過載、起動超時、斷相、不平衡、低功率、接地/漏電、te保護、堵轉、逆序、溫度等保護以及外部故障連鎖停機,與PLC、軟啟、變頻器等配合,實現電動機自動或遠程控制,監視、控制各個工藝設備,保障正常生產。